• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于提高康普顿相机探测效率的新型环状吸收体几何设计

杨皓,袁子泉,薛东阳,江建勇

downloadPDF
杨皓, 袁子泉, 薛东阳, 江建勇. 用于提高康普顿相机探测效率的新型环状吸收体几何设计[J]. 华体会外围 (自然科学版). doi: 10.12202/j.0476-0301.2022248
引用本文: 杨皓, 袁子泉, 薛东阳, 江建勇. 用于提高康普顿相机探测效率的新型环状吸收体几何设计[J]. 华体会外围 (自然科学版).doi:10.12202/j.0476-0301.2022248
YANG Hao, YUAN Ziquan, XUE Dongyang, JIANG Jianyong. A Novel Geometric Design of Annular Absorber for Improving the Detection Efficiency of Compton Camera[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2022248
Citation: YANG Hao, YUAN Ziquan, XUE Dongyang, JIANG Jianyong. A Novel Geometric Design of Annular Absorber for Improving the Detection Efficiency of Compton Camera[J].Journal of Beijing Normal University(Natural Science).doi:10.12202/j.0476-0301.2022248

用于提高康普顿相机探测效率的新型环状吸收体几何设计

doi:10.12202/j.0476-0301.2022248
基金项目:国家自然科学基金( 12105018); 北京市科技新星计划(Z211100002121129);北京师范大学引进人才经费(312232104)
详细信息
    通讯作者:

    江建勇,副教授. 研究方向:辐射探测与成像. E-mail:jianyong@bnu.edu.cn

  • 中图分类号:TL812+.1

A Novel Geometric Design of Annular Absorber for Improving the Detection Efficiency of Compton Camera

  • 摘要:康普顿相机成像技术在许多领域都有重要应用.通过Geant4蒙特卡罗模拟和实验,本文提出了一种新型高灵敏度环状吸收体结构康普顿相机,并对比了该结构康普顿相机与传统双层面结构康普顿相机的探测效率和角度分辨率.模拟中,双层面结构康普顿相机散射体和吸收体均包含8×8的Ce:Gd 3(Al, Ga) 5O 12(GAGG)闪烁体探测器.散射体探测器单元尺寸为1×1×0.5 cm 3,吸收体探测单元尺寸为1×1×1 cm 3.新型环状吸收体结构康普顿相机散射体与双层面结构康普顿相机散射体相同,吸收体探测器单元分布在一个内半径5.15 cm,外半径约7.39 cm的环状结构上,总探测单元数与双层面结构康普顿相机吸收体探测器数相同,每个探测器单元尺寸为1×1×1 cm 3.模拟和实验结果显示,在角度分辨率相当甚至更优的情况下,新型环状吸收体结构康普顿相机的探测效率显著优于双层面结构康普顿相机,当散射体和吸收体距离>11.4 cm时,探测效率提高幅度超过1倍.

  • 图 1康普顿相机成像原理示意

    图 2 $\Delta S$ 示意

    图 3(a)普通双层面结构康普顿相机;(b)大吸收体平面探测结构

    图 4新型结构康普顿相机

    图 5(a)普通双层面结构康普顿相机;(b)新型环状吸收体康普顿相机

    图 6不同探测器间距的 $\rho (x,y)$ 分布

    图 7图6中 $y = 0$ 的截面

    图 8(a)两种康普顿摄像机探测效率的模拟比较;(b)新型康普顿相机探测效率的提高

    图 9普通双层面结构康普顿相机的不同散射体平面和吸收体平面距离的滤波反投影重建图像

    图 10新型环状吸收体结构康普顿相机的不同散射体平面和吸收体平面距离的滤波反投影重建图像

    图 11两种不同结构的康普顿相机的角度分辨率随着两层探测器距离变化的变化

    图 12(a)两种康普顿摄像机符合事件数的比较;(b)新型康普顿相机探测效率的提高

    图 13普通双层面结构康普顿相机的不同散射体平面和吸收体平面距离的滤波反投影重建图像

    图 14新型环状吸收体结构康普顿相机的不同散射体平面和吸收体平面距离的滤波反投影重建图像

    图 15两种不同结构的康普顿相机的角度分辨率随着两层探测器距离变化的变化

  • [1] TODD R W,NIGHTINGALE J M,EVERETT D B. A proposed γ camera[J]. Nature,1974,251(5471):132
    [2] PARODI K. On-and off-line monitoring of ion beam treatment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2016,809:113
    [3] POITRASSON-RIVIèRE A,MAESTAS B A,HAMEL M C,et al. Monte Carlo investigation of a high-efficiency,two-plane Compton camera for long-range localization of radioactive materials[J]. Progress in Nuclear Energy,2015,81:127doi:10.1016/j.pnucene.2015.01.009
    [4] JUDSON D S,BOSTON A J,COLEMAN-SMITH P J, et al. Compton imaging with the PorGamRays spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2011,652(1):587
    [5] WU C P,LI L. Review of Compton camera imaging technology development[J]. Nuclear Techniques,2021,44(5):43
    [6] 武传鹏,李亮. 康普顿相机成像技术进展[J]. 核技术,2021,44(5):45doi:10.11889/j.0253-3219.2021.hjs.44.050403
    [7] WATANABE S,TAJIMA H,FUKAZAWA Y,et al. The Si/CdTe semiconductor Compton camera of the ASTRO-H soft gamma-ray detector (SGD)[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2014,765:192
    [8] HARAYAMA A,ICHINOHE Y,ODAKA H,et al. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2015,787:207
    [9] JIANG J Y,SHIMAZOE K,NAKAMURA Y,et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera[J]. Journal of Nuclear Science and Technology,2016,53(7):1067doi:10.1080/00223131.2015.1089796
    [10] SAULL P R B,SINCLAIR L E,SEYWERD H C J,et al. First demonstration of a Compton gamma imager based on silicon photomultipliers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2012,679:89
    [11] SINCLAIR L,SAULL P,HANNA D,et al. Silicon photomultiplier-based Compton telescope for safety and security (SCoTSS)[J]. IEEE Transactions on Nuclear Science,2014,61(5):2745doi:10.1109/TNS.2014.2356412
    [12] MACLEOD A M L,BOYLE P J,HANNA D S,et al. Development of a Compton imager based on bars of scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2014,767:397
    [13] LLOSA G,BERNABEU J,BURDETTE D,et al. Last results of a first Compton probe demonstrator[J]. IEEE Transactions on Nuclear Science,2008,55(3):936doi:10.1109/TNS.2008.922817
    [14] KHAPLANOV A,PETTERSSON J,CEDERWALL B. Compton imager based on a single planar segmented HPGe detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2007,580(2):1075
    [15] 王薇,李传龙,吴建华,等. 康普顿成像系统角分辨影响因素的理论及模拟研究[J]. 原子能科学技术,2019,53(12):2471
    [16] AGOSTINELLI S,ALLISON J,AMAKO K A,et al. GEANT4−a simulation toolkit[J]. Nuclear instruments and methods in physics research section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2003,506(3):250
    [17] MITCHELL L J,PEREA R,PHLIPS B F,et al. Proton-induced activation of new scintillator materials:SrI,GAGG,CLLB,CLLBC,TLYC,CLYC-7[J]. IEEE Transactions on Nuclear Science,2022,69(6):1322doi:10.1109/TNS.2022.3155721
    [18] 丁雨憧,何杰,胡少勤,等. 掺铈钆铝镓石榴石闪烁晶体的研究进展及应用[J]. 压电与声光,2021,43(2):281
    [19] XU D,HE Z. Filtered back-projection in 4π Compton imaging with a single 3D position sensitive CdZnTe detector[J]. IEEE Transactions on Nuclear Science,2006,53(5):2787doi:10.1109/TNS.2006.880974
    [20] PARRA L C. Reconstruction of cone-beam projections from Compton scattered data[J]. IEEE Transactions on Nuclear Science,2000,47(4):1543doi:10.1109/23.873014
    [21] STONE J E,GOHARA D,SHI G C. OpenCL:a parallel programming standard for heterogeneous computing systems[J]. Computing in Science & Engineering,2010,12(3):66
    [22] KLEIN O,NISHINA Y. Über Die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von Dirac[J]. Zeitschrift Für Physik,1929,52(11):853
    [23] TERZIOGLU F,KUCHMENT P,KUNYANSKY L. Compton camera imaging and the cone transform:a brief overview[J]. Inverse Problems,2018,34(5):054002doi:10.1088/1361-6420/aab0ab
    [24] KATAGIRI H,SATOH W,ENOMOTO R,et al. Development of an all-sky gamma-ray Compton camera based on scintillators for high-dose environments[J]. Journal of Nuclear Science and Technology,2018,55(10):1172doi:10.1080/00223131.2018.1485598
    [25] BAGHAEI H,WONG W H,LI H D,et al. Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm[J]. IEEE Transactions on Nuclear Science,2003,50(1):3doi:10.1109/TNS.2002.807945
    [26] WU C P,ZHANG S Y,LI L. An accurate probabilistic model with detector resolution and Doppler broadening correction in list-mode MLEM reconstruction for Compton camera[J]. Physics in Medicine and Biology,2022,67(12):67
  • 加载中
图(15)
计量
  • 文章访问数:19
  • HTML全文浏览量:3
  • PDF下载量:5
  • 被引次数:0
出版历程
  • 收稿日期:2022-10-01
  • 录用日期:2022-08-31
  • 网络出版日期:2023-02-15

目录

    /

      返回文章
      返回
        Baidu
        map