• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带脉冲和强Allee效应的集团内捕食系统的周期解

艾姣,王凯华

downloadPDF
艾姣, 王凯华. 带脉冲和强Allee效应的集团内捕食系统的周期解[J]. 华体会外围 (自然科学版), 2022, 58(6): 815-823. doi: 10.12202/j.0476-0301.2022008
引用本文: 艾姣, 王凯华. 带脉冲和强Allee效应的集团内捕食系统的周期解[J]. 华体会外围 (自然科学版), 2022, 58(6): 815-823.doi:10.12202/j.0476-0301.2022008
AI Jiao, WANG Kaihua. Periodic solution for intraguild predation system with impulsive and strong Allee effect[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 815-823. doi: 10.12202/j.0476-0301.2022008
Citation: AI Jiao, WANG Kaihua. Periodic solution for intraguild predation system with impulsive and strong Allee effect[J].Journal of Beijing Normal University(Natural Science), 2022, 58(6): 815-823.doi:10.12202/j.0476-0301.2022008

带脉冲和强Allee效应的集团内捕食系统的周期解

doi:10.12202/j.0476-0301.2022008
基金项目:国家自然科学基金资助项目(61962018)
详细信息
    通讯作者:

    王凯华(1980—),男,博士,教授. 研究方向:生物数学,动力系统. E-mall:kaihuawang@hainan.edu.cn

  • 中图分类号:O175.1

Periodic solution for intraguild predation system with impulsive and strong Allee effect

  • 摘要:建立了具有周期系数的带脉冲和强Allee效应的集团内捕食模型;证明了模型的持久性;利用Mawhin重合度理论与分析工具,研究了该模型周期解的存在性;讨论了周期解的稳定性;得到了正周期解存在、全局稳定的充分条件,并通过数值模拟对结果的有效性进行了验证.

  • 图 1IGP模型示意

    图 2式 (4) $2{\text{π}}$ -周期解的 ${x}_{1}\left(t\right)、{x}_{2}\left(t\right)、{x}_{3}\left(t\right)$ 演化和轨线

    图 3式 (4) 奇怪吸引子的 ${x}_{1}\left(t\right)、{x}_{2}\left(t\right)、{x}_{3}\left(t\right)$ 演化和轨线

  • [1] POLIS G A,MYERS C A,HOLT R D. The ecology and evolution of intraguild predation:potential competitors that eat each other[J]. Annual Review of Ecology and Systematics,1989,20(1):297doi:10.1146/annurev.es.20.110189.001501
    [2] HSU S B,RUAN S,YANG T H. Analysis of three species Lotka-Volterra food web models with omnivory[J]. Journal of Mathematical Analysis & Applications,2015,426(2):659
    [3] RUAN S. Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling[J]. Journal of Mathematical Biology,1993,31(6):633doi:10.1007/BF00161202
    [4] HAUTIER L,MARTIN G S,CALLIER P,et al. Alkaloids provide evidence of intraguild predation on native coccinellids by Harmonia axyridis in the field[J]. Biological Invasions,2011,13(8):1805doi:10.1007/s10530-010-9935-0
    [5] ANDERSON T L,SEMLITSCH R D. High intraguild predator density induces thinning effects on and increases temporal overlap with prey populations[J]. Population Ecology,2014,56(2):265doi:10.1007/s10144-013-0419-9
    [6] RYAN D,CANTRELL R S. Avoidance behavior in intraguild predation communities:a cross-diffusion model[J]. Discrete and Continuous Dynamical Systems: Series A,2014,35(4):1641
    [7] HAN R J,DAI B X,CHEN Y M. Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects[J]. AIP Advances,2019,9(3):35
    [8] RABAGO J F T,COLLERA J. Hopf bifurcation in a delayed intraguild predation model[J]. Southeast Asian Bulletin of Mathematics,2018,42(5):691
    [9] KANG Y,WEDEKIN L. Dynamics of an intraguild predation model with generalist or specialist predator[J]. Journal of Mathematical Biology,2013,67(5):1227doi:10.1007/s00285-012-0584-z
    [10] JI J P,WANG L. Competitive exclusion and coexistence in an intraguild predation model with Beddington-De Angelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation,2022,107:106192doi:10.1016/j.cnsns.2021.106192
    [11] TRIPATHI J P,MANDAL P S,POONIA A,et al. A widespread interaction between generalist and specialist enemies:the role of intraguild predation and Allee effect[J]. Applied Mathematical Modelling,2021,89(Part 1):105
    [12] BEREC L,ANGULO E,COURCHAMP F. Multiple Allee effects and population management[J]. Trends in Ecology & Evolution,2007,22(4):185
    [13] COURCHAMP F, BEREC L, GASCOIGNE J. Allee effects in ecology and conservation[M]. Illustrated Edition. New York: Oxford University Press, 2009
    [14] MOORING M S,FITZPATRICK T A,NISHIHIRA T T,et al. Vigilance,predation risk,and the Allee effect in desert bighorn sheep[J]. Journal of Wildlife Management,2004,68(3):519doi:10.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
    [15] PAL P J,SAHA T. Qualitative analysis of a predator-prey system with double Allee effect in prey[J]. Chaos Solitons and Fractals,2015,73(5):36
    [16] BAI D Y, KANG Y, RUAN S G, et al. Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey[J]. Nonlinear Analysis: Real World Applications, 2021, 58: 103206
    [17] LASHMIKANTHAM V, BAINO D D, SIMENOV P. Theorey of impulsive differential equations[M]. Singapore: World Scientific Publishing Company, 1989
    [18] WANG Q,DING M M,WANG Z J,et al. Existence and attractivity of a periodic solution for an n-species Gilpin-Ayala impulsive competition system[J]. Nonlinear Analysis: Real World Applications,2010,11(4):2675doi:10.1016/j.nonrwa.2009.09.015
    [19] ZHANG S W,TAN D J,CHEN L S. The periodic n-species Gilpin-Ayala competition system with impulsive effect[J]. Chaos Solitons & Fractals,2005,26(2):507
    [20] FAN X M,JIANG F Q,ZHANG H N. Dynamics of multi-species competition-predator system with impulsive perturbations and Holling type III functional responses[J]. Nonlinear Analysis,2011,74(10):3363doi:10.1016/j.na.2011.02.012
    [21] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[M]. New York: Springer-Verlag, 1977
    [22] ZHANG J,GUI Z J. Periodic solutions of nonautonomous cellular neural networks with impulses and delays[J]. Nonlinear Analysis Real World Applications,2009,10(3):1891doi:10.1016/j.nonrwa.2008.02.029
  • 加载中
图(3)
计量
  • 文章访问数:148
  • HTML全文浏览量:81
  • PDF下载量:22
  • 被引次数:0
出版历程
  • 收稿日期:2022-01-21
  • 录用日期:2022-03-29
  • 网络出版日期:2022-05-18
  • 刊出日期:2022-11-27

目录

    /

      返回文章
      返回
        Baidu
        map