• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电海绵-AgNWs复合柔性应力传感器灵敏度优化

李秀平,李娜,刘程,于福来,谢智荆,罗才辉

downloadPDF
李秀平, 李娜, 刘程, 于福来, 谢智荆, 罗才辉. 导电海绵-AgNWs复合柔性应力传感器灵敏度优化[J]. 华体会外围 (自然科学版), 2022, 58(6): 871-877. doi: 10.12202/j.0476-0301.2021250
引用本文: 李秀平, 李娜, 刘程, 于福来, 谢智荆, 罗才辉. 导电海绵-AgNWs复合柔性应力传感器灵敏度优化[J]. 华体会外围 (自然科学版), 2022, 58(6): 871-877.doi:10.12202/j.0476-0301.2021250
LI Xiuping, LI Na, LIU Cheng, YU Fulai, XIE Zhijing, LUO Caihui. Modification of conductive sponge-AgNWs flexible stress sensor[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 871-877. doi: 10.12202/j.0476-0301.2021250
Citation: LI Xiuping, LI Na, LIU Cheng, YU Fulai, XIE Zhijing, LUO Caihui. Modification of conductive sponge-AgNWs flexible stress sensor[J].Journal of Beijing Normal University(Natural Science), 2022, 58(6): 871-877.doi:10.12202/j.0476-0301.2021250

导电海绵-AgNWs复合柔性应力传感器灵敏度优化

doi:10.12202/j.0476-0301.2021250
基金项目:辽宁省自然科学基金资助项目 (20170540045); 大连市科技之星资助项目(2019RQ087)
详细信息
    通讯作者:

    李秀平(1984—),女,讲师. 研究方向:聚合物基纳米复合材料. E-mail:lixp0204@sina.cn

  • 中图分类号:TB34

Modification of conductive sponge-AgNWs flexible stress sensor

  • 摘要:以导电海绵为基底,并将其与银纳米线(AgNWs)复合作为柔性电极,制备了一系列柔性应力传感器,其具有良好的灵敏度和重复性.研究发现AgNWs均匀附着在导电海绵的泡沫网络中.受力时随着海绵泡沫结构大形变的同时,AgNWs结构在微观上也产生次级形变,这种多层次的导电网络结构变化有利于增强应力传感器的灵敏度.考察了不同介电材料、介电层厚度、AgNWs滴涂层数等条件对灵敏度的影响,并优化了制备条件,实现了传感器的可控制备.本文制备的传感器制备方法简单,有一定实际应用前景.

  • 图 1封装的柔性应力传感器的结构示意

    图 2应力传感器的测试平台

    图 3AgNWs复合导电海绵的微观结构

    a.放大250倍,导电海绵网络结构;b.放大2万倍,附着在导电海绵上的AgNWs的结构.

    图 4不同介电材料传感器的灵敏度曲线

    图 5介电层厚度对传感器灵敏度的影响

    a. 介电层厚度0.5 cm; b. 介电层厚度1.0 cm;c. 介电层厚度1.5 cm;d. 介电层厚度2.0 cm.

    图 6不同AgNWs滴涂层数对传感器灵敏度的影响

    a. 滴涂0层;b. 滴涂2层;c. 滴涂4层;d. 滴涂6层.

    图 7柔性应力传感器重复性曲线(50次)

    图 8应力传感器的迟滞性曲线

  • [1] 李秀平,刘程,丁仕强,等. PBI基底柔性导电材料的制备和性能研究[J]. 华体会外围 (自然科学版),2020,56(5):654
    [2] ABELS C,MASTRONARDI V M,GUIDO F,et al. Nitride-based materials for flexible MEMS tactile and flow sensors in robotics[J]. Sensors,2017,17(5):1080doi:10.3390/s17051080
    [3] YAO L L,VAN DE ZEDDE R,KOWALCHUK G. Recent developments and potential of robotics in plant eco-phenotyping[J]. Emerging Topics in Life Sciences,2021,5(2):289doi:10.1042/ETLS20200275
    [4] MALIK A,KANDASUBRAMANIAN B. Flexible polymeric substrates for electronic applications[J]. Polymer Reviews,2018,58(4):630doi:10.1080/15583724.2018.1473424
    [5] WANG T,YANG H,QI D P,et al. Mechano-based transductive sensing for wearable healthcare[J]. Small,2018,14(11):1702933doi:10.1002/smll.201702933
    [6] WU Y T,YAN T,PAN Z J. Wearable carbon-based resistive sensors for strain detection:a review[J]. IEEE Sensors Journal,2021,21(4):4030doi:10.1109/JSEN.2020.3034453
    [7] YANG J C,MUN J,KWON S Y,et al. Electronic skin:recent progress and future prospects for skin-attachable devices for health monitoring,robotics,and prosthetics[J]. Advanced Materials,2019,31(48):1904765doi:10.1002/adma.201904765
    [8] HE F L,YOU X Y,WANG W G,et al. Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications[J]. Small Methods,2021,5(3):2001041doi:10.1002/smtd.202001041
    [9] WANG C Y,XIA K L,WANG H M,et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials,2019,31(9):1801072doi:10.1002/adma.201801072
    [10] TALLMAN T N,SMYL D J. Structural health and condition monitoring via electrical impedance tomography in self-sensing materials:a review[J]. Smart Materials and Structures,2020,29(12):123001doi:10.1088/1361-665X/abb352
    [11] MISHRA R B,EL-ATAB N,HUSSAIN A M,et al. Recent progress on flexible capacitive pressure sensors:from design and materials to applications[J]. Advanced Materials Technologies,2021,6(4):2001023doi:10.1002/admt.202001023
    [12] SUN Y, NELSON B J. MEMS capacitive force sensors for cellular and flight biomechanics[J]. Biomedical Materials, 2007, 2(1): S16
    [13] WASEEM A,JOHAR M A,HASSAN M A,et al. Flexible self-powered piezoelectric pressure sensor based on GaN/p-GaN coaxial nanowires[J]. Journal of Alloys and Compounds,2021,872:159661doi:10.1016/j.jallcom.2021.159661
    [14] ZASZCZYŃSKA A,GRADYS A,SAJKIEWICZ P. Progress in the applications of smart piezoelectric materials for medical devices[J]. Polymers,2020,12(11):2754doi:10.3390/polym12112754
    [15] HASAN M,RHO J,KANG S Y,et al. Low temperature aluminum oxide gate dielectric on plastic film for flexible device application[J]. Japanese Journal of Applied Physics,2010,49(5):05EA01
    [16] GAO Q,MEGURO H,OKAMOTO S,et al. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies[J]. Langmuir,2012,28(51):17593doi:10.1021/la304240r
    [17] MADSEN M,TAKEI K,KAPADIA R,et al. Nanoscale semiconductor “X” on substrate “Y” - processes,devices,and applications[J]. Advanced Materials,2011,23(28):3115doi:10.1002/adma.201101192
    [18] FAN F R,LIN L,ZHU G,et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters,2012,12(6):3109doi:10.1021/nl300988z
    [19] VORATHIN E,HAFIZI Z M,ISMAIL N,et al. Review of high sensitivity fibre-optic pressure sensors for low pressure sensing[J]. Optics & Laser Technology,2020,121:105841
    [20] NAG M,SINGH J,KUMAR A,et al. Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor[J]. Microsystem Technologies,2019,25(10):3977doi:10.1007/s00542-019-04392-5
    [21] LIU S Y,LU J G,SHIEH H P D. Influence of permittivity on the sensitivity of porous elastomer-based capacitive pressure sensors[J]. IEEE Sensors Journal,2018,18(5):1870doi:10.1109/JSEN.2017.2789242
    [22] AHMAD H,CHONG W Y,THAMBIRATNAM K,et al. High sensitivity fiber Bragg grating pressure sensor using thin metal diaphragm[J]. IEEE Sensors Journal,2009,9(12):1654doi:10.1109/JSEN.2009.2030388
    [23] 秦宁. 导电聚合物/聚氨酯基复合材料力学传感器的制备及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018
    [24] 贺晓晓. 功能化导电微纳米复合材料的制备及其在柔性电子器件上的应用[D]. 青岛: 青岛大学, 2018
    [25] 全勇. 银纳米线柔性压力传感器的制备及响应特性优化研究[D]. 成都: 电子科技大学, 2017
    [26] 侯玉群,莫黎昕,翟庆彬,等. 银纳米线电极微结构对柔性压力传感器灵敏度的影响[J]. 信息记录材料,2014,15(5):13doi:10.3969/j.issn.1009-5624.2014.05.003
    [27] 侯玉群. 柔性电容式应力传感器及其灵敏度影响因素研究[D]. 北京: 北京印刷学院, 2014
  • 加载中
图(8)
计量
  • 文章访问数:114
  • HTML全文浏览量:38
  • PDF下载量:17
  • 被引次数:0
出版历程
  • 收稿日期:2021-10-12
  • 录用日期:2022-04-26
  • 网络出版日期:2022-07-16
  • 刊出日期:2022-12-01

目录

    /

      返回文章
      返回
        Baidu
        map